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My attitude is batten down the hatches...Any co without at least a year of cash
minimum in the bank is in trouble... - Douglas Leone, a partner at Sequoia
Captial in an email to his partner Michael Moritz, October 6th, 2008.

The amount of financing available for startups engaged in innovation is notoriously

volatile. These investment cycles have been documented in the literature on venture

capital (Gompers and Lerner, 2004; Kaplan and Schoar, 2005; Gompers et al., 2008),

but have also been shown in historical work linking financial market activity to radical

innovations in manufacturing, communications and transportation going back to the mid

1700s (Kindleberger, 1978; Perez, 2002).

Entrepreneurs and venture capital investors constantly worry about these fluxes in

capital and refer to them as financing risk - the potential inability to find future funding

for otherwise healthy firms.1 This worry seems rational given the great declines in venture

investing in both 2001 and 2008, and to a lesser extent the ebbs and flows of capital that

have occurred within different venture sectors at different times.

What impact does the shifting supply of capital have on startup innovation? We address

this question by modeling the impact of financing risk on the type of new ventures that

investors are willing to fund. In our model startups are vulnerable to the state of the

capital market every time they choose to raise capital. This leads to a desire to raise

capital less frequently and in larger amounts at each stage. However, financiers of such

firms want to stage their investments and learn more about the firm’s potential before

investing further, in order to preserve the real-option to terminate their investment (see

Gompers, 1995; Bergemann and Hege, 2005; Bergemann, Hege and Peng, 2008).

The presence of financing risk therefore creates a trade-off for investors between

providing more capital and providing less. Investors can reduce the impact of a shock

to the financial markets by giving a firm more money upfront (or committing to fund),

but in a world with incomplete contracts this comes at the cost of lost abandonment

options.2 In equilibrium, financing risk therefore has the greatest impact on firms that

1This is similar in spirit to large firms who finance with debt and face rollover risk when trying to issue new
bonds to replace maturing bonds (Acharya, Gale and Yorulmazer, 2011; He and Xiong, 2012b,a).

2As we will explore in the body of the paper, in a world of complete contracts financing risk could be eliminated
with contracts that guaranteed future funding in the appropriate state. However, in a more realistic scenario of
incomplete contracts, investors are unable to appropriately coordinate across time. This leads financing risk to
become a salient issue. For example, venture capitalists do use contract terms such as staged financing to attenuate
the issue, but since they cannot be written to cover all future financing needs and contingencies this type of contract
cannot eliminate financing risk.
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have the most option value and cannot be given a lot of money upfront. Firms with the

greatest real options are likely to be the most innovative firms in the economy, which is

why financing risk has a particularly strong impact on startup innovation.

Our model demonstrates how financing risk impacts the degree to which investors

are willing to experiment and thereby change the type of firm that they are able to

fund. Our results suggest that financial markets may not simply reduce frictions in

the financing for new ventures, but may play a much more vital role in the diffusion

and commercialization of new technologies through their ability to facilitate or hinder

experimentation by investors. The extent of commercialization of new ideas in a given

industry, place, or time may depend crucially on the state of the financial market.

A growing body of work considers the role of finance in the innovation process (see

Black and Gilson, 1998; Kortum and Lerner, 2000; Hellmann, 2002; Sorensen, 2007;

Lerner, Sorensen and Stromberg, 2011; Tian and Wang, 2011; Manso, 2011; Hellmann

and Puri, 2000). We contribute to this line of research by directly considering the cycles

of capital availability and their impact on innovation due to the rational response of

investors. This is a different way to think about the degree and timing of innovation.

Instead of money chasing deals (Gompers and Lerner, 2000), where an abundance of

capital leads to the financing of lower return deals, our model suggests that money also

changes which deals are funded toward more innovative projects. This leads to a number

of new insights and empirical predictions relating to the link between financial markets

and the commercialization of innovation. For example, many view the increased failure

rates among investments made in boom times as prima facie evidence of lower quality

investments. But times of greater experimentation would also be associated with increased

failure rates, not because the projects were worse, but rather because they were more novel

and unproven. An implication of this alternate view is that we should simultaneously see

bigger successes for firms financed in boom times. This matches the findings in Nanda and

Rhodes-Kropf (2013) who find that that projects funded in boom times are more likely

to fail but conditional on success create more value, patent more and receive more patent

cites.

In a similar vein, we contend that increases in investors’ willingness-to-experiment may

be an important part of the technological revolutions that drive the process of creative
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destruction (Joseph Schumpeter, 1942; Philippe Aghion and Peter Howitt, 1992). Much of

the existing literature on the process of creative destruction has focused on the successes of

breakthrough technologies at the expense of established firms, while there is little emphasis

on tying together the fact that the ultimate success of a few firms commercializing radical

innovations comes hand-in-hand with a vast number of failures among other new ventures

(Klepper and Graddy, 1990; Kerr and Nanda, 2009). Technological revolutions seem to

be associated with periods of greater experimentation, with a few successful new ventures

and a large number of failures among startups, not just failures of existing firms.

We demonstrate how financial markets can create this outcome - hot markets facilitate

the experimentation that is important for the commercialization and diffusion of radical

new technologies. While prior work has suggested that correlations between innovation and

financial market booms could be overreaction by investors (Gompers and Lerner, 1998),

rational reactions to fundamentals (Gompers et al., 2008; Pastor and Veronesi, 2009), herd

behavior for reputation concerns (Scharfstein and Stein, 1990) or even reverse causality

(Hobijn and Jovanovic, 2001), our model suggests that at least part of the link between

innovation and periods of hot financial markets is because low financing risk leads investors

to fund experimentation and hence discover and commercialize the most innovative ideas

in the economy. Our model therefore provides a more positive interpretation to peaks of

financial activity and may also help explain the historical link between the initial diffusion

of many novel technologies (e.g. canals, railways, telephones, motor cars, internet, clean

technology) being associated with heated financial market activity (Perez (2002)). Many

other predictions arise from our model with implications for how the financial markets

impact innovation (Fagnan et al., 2013; Fernandez, Stein and Lo, 2012; Janeway, 2012).

The remainder of the paper is organized as follows. Section I outlines a simple model of

investing with financing risk. Section II considers the investor response to financing risk

and shows why why the most innovative projects in the economy are most impacted by

financing risk. Section III summarizes the key implications and extensions of our model

and Section IV concludes.
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I. A Model of Investment

The central goal of our model is to delineate the equilibrium impact of financing risk

on investment decisions. Financing risk is the risk that future investors will not fund a

firm at its next stage even if the NPV of the project, if fully funded, has not changed,

leading a viable firm with good fundamentals to go bankrupt. We emphasize that financing

risk is part of a rational equilibrium and show why innovative projects are particularly

susceptible to financing risk.

We proceed in two steps. First, we outline a simple model of financing risk to highlight

the conditions under which investors would either invest or not invest in the same firm,

depending on their beliefs about funding availability for startups in the next period. Next,

we endogenize the response to the potential of financing risk to document that it can be

eliminated for many firms, but not for the most innovative startups in the economy.

A. Setup

We model a single early stage firm inside a broader economy. By early stage we aim

to capture the idea that the firm does not have the cash flows to be self sufficient and

hence requires outside investment to survive. A second aspect of early stage firms is

that investment in an early stage firm may produce positive results, negative results or

inconclusive results, so more money may be needed to learn if the project is viable. For

example, a new biotech firm may do initial studies to determine how well a compound

works in mice. Then, depending on the results, money may be spent to start primate

trials, the project may be shut down, or more studies on mice may be needed.

Consider a firm that must get over hurdles in order to reach its potential expected payoff,

which one can think of as the exit point for investors. These hurdles could represent several

rounds of technological uncertainty, or customer adoption risk, or scaling issues, etc. For

simplicity we will examine a firm with just a single hurdle as this is enough to demonstrate

the relevant issues.

The firm needs to raise x from an investor to attempt to get over the hurdle. The

investor will only fund the firm if it is an NPV positive investment. We will refer to

the NPV of a firm before it crosses the hurdle as Πt, where the t subscript indicates the

period. With a probability γl the results are negative and the project fails, where the l
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subscript represents loss. Failure means that some information is learned about the firm

that makes any new investment negative NPV regardless of the financing environment.

It might be the case that its technology does not work, its new processes is not cost

effective or estimates of the target market are smaller than initially hoped, etc. With

probability γa the firm meets a potential acquirer and negotiates an exit price, where the

a represents an acquisition (this will be elaborated on below). With probability γw the

project wins, achieves the hurdle, and gets a payoff of W which one can think of as IPO

or cash-flow-positive NPV. And with probability 1− γl − γa − γw the project needs more

money to attempt to get over the hurdle again. In this case spending x again gives the

firm another attempt to get over the hurdle. Entrepreneurs and investors often refer to

this state of neither complete failure nor successfully overcoming the hurdle as the act of

‘pivoting’ to try to cross the hurdle again. For simplicity we suppress γw (assume γw = 0)

as an alternative exit is not relevant and we focus only on the potential acquisition.

At each point in time the possibility that the firm needs more money means that, in

theory, a firm could continue for a nearly infinite number of periods. However, we would

never expect to actually see this in the data. For example a firm with a 33% chance of

needing more money each period would only have an 11% chance of neither making it over

the hurdle or failing after two periods and only a 0.4% chance after 5 periods. The notion

that it may always be possible to try for one more period captures the idea that while at

the start of a project investors can be confident that the project will yield a positive or

negative result within about 7 years, they can never be sure how much money the project

will require. Thus, conditional on a firm making it 7 years without failing or succeeding

investors cannot be sure how much more investment will be needed to get an answer one

way or the other.

We model the decision of financiers willing to invest in early stage firms, which we call

venture capitalists (VCs).3 In each period, perfectly competitive VCs choose whether or

not to invest the x to support the firm through the next period. Firms that do not receive

capital go bankrupt and, for simplicity, are worth nothing. Initially we will consider VCs

3This is consistent with the view that VCs are thought to have a number of skills relating to the finding and
nurturing new companies (Hsu (2004); Kaplan, Sensoy and Stromberg (2009); Hellmann and Puri (2002); Sorensen
(2007)). However, our notation of VC could represent any investor in such firms. For example, Lamoreaux and
Sokoloff (2007) show how even as early as 1900 private individuals acted as VCs and funded innovative new ventures.
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who can fund the firm for only one period, and later we consider larger investments.4

However, capital is never scarce in the model. Although each individual VC is capital

constrained, we assume that there are enough VCs so that all positive NPV projects can

get done. These assumptions maximize the chance that the VC will invest as we want to

make sure our results do not arise from any aggregate capital constraints.

VCs require an expected rate of return of r.5 VCs are rational and use a positive NPV

rule for investing and they expect other VCs to also rationally use a positive NPV rule.

Since VCs compete away all rents leaving the entrepreneur with any positive NPV, a VC

investing in period 1 gets a fraction x/(Π1 + x) of the firm.6 This fraction is then diluted

down in the next period as the next investor gets a fraction of x/(Π2 + x), so the first

investor retains the fraction x/(Π1+x)∗(1−x/(Π2+x)). Of course, the present discounted

value of the VCs’ fractions in each future period times the expected payoff in each future

period exactly equal x.7 This ensures that the firm will get an investment as long as the

firm is not NPV negative. Therefore, as we proceed, in order to determine if the VC will

invest we will simply need to determine if the firm is not NPV negative.

B. Forecasts

A key aspect of our model is the sequential investments that may be required before

the firm becomes cash flow positive. Thus VCs deciding whether to invest must determine

whether or not they believe other investors will continue to support the firm in the future

(independent of the fundamental performance of the firm). Note, however, that for an

equilibrium to be rational all forecasts of behavior must be correct in expectation.

We assume that there is an exogenous, publicly observable signal that investors use to

4VCs have limited pools of capital and are often further restricted by the contract with their limited partners
to invest no more than a given percent in any one deal.

5Pastor and Veronesi (2009) provide an interesting explanation of asset price increases and decreases in innovative
sectors based on changing discount rates. Our focus is on real activity in innovative sectors and the changing nature
of that activity.

6Nothing is driven by the choice of equity contract and the model will work with any contract, including a one
period debt contract, because the firm today is still impacted by the potential not to receive the funding (no matter
the type of contract) tomorrow.

7For example consider a simple firm that requires an investment of $1 but pays $4 with a 50% probability or
zero. If it pays zero then another $1 investment will pay $4 with a 50% probability and with a 50% probability the
firm ends. The NPV of the firm, Y = 0.5 ∗ 4 + 0.5 ∗ (0.5 ∗ 4 − 1) − 1 = 2 + 0.5 − 1 = $1.50, is captured by the
entrepreneur. Therefore, the VC who invests the first $1 gets 1/(Y + 1) = 1/2.5 = 2/5. The NPV of the second
investment $1 is Z = 0.5 ∗ 4− 1 = $1, so the VC who invests the second $1 gets 1/(Z + 1) = 1/2 of the firm. If the
second investment occurs, then the first VC who originally owned 2/5th of the company gets diluted down to 1/5th.
Thus the first VC gets an expected payoff of 0.5 ∗ 4(2/5) + 0.5 ∗ 0.5 ∗ 4(1/5) = 0.80 + .20 = $1 which is exactly what
he invested. Therefore, the investment including expected dilution is NPV zero for the VCs. This ensures a VC will
invest as long as the firm has NPV ≥ 0, i.e., the fraction x/(NPV + x) is less than or equal to 1.
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form beliefs about whether other investors will invest in the next period. We will delineate

the signal with s(t) ∈ [0, 1]. The signal has an exogenous transition probability that we

assume follows a Markov chain. θ is the probability that the signal stays in state 1, and

(1 − θ) is the probability that the signal shifts from 1 to 0. φ is the probability that the

signal shifts from 0 to 1, and (1 − φ) is the probability that the signal stays in state 0.

Thus, the transition matrix for the signal s(t) is

s(t) = 1

s(t) = 0

s(t+ 1) = 1 s(t+ 1) = 0 θ 1− θ

1− φ φ

 = S
(1)

The VCs use s(t) to form beliefs about the actions of other VCs investing in the future.

When s(t) = 1 the forecast is that in the next round, (t + 1), other VCs will invest with

probability θ (that is, when s(t + 1) = 1), and not invest with probability 1 − θ. When

s(t) = 0 the next round VCs are forecasted to invest with probability 1 − φ and not to

invest with probability φ. These beliefs must be correct in equilibrium for them to be

rational – this will be demonstrated below.

We model the transition probability as exogenous because we are interested in the

response of investors to the possibility of financing risk rather than in the causes for the

potential equilibria switch.8 However, one can think of exogenous shocks to fundamentals

that determine which signal occurs and thus which equilibrium results. We will refer to a

‘shock’ as a shift between states. Examples of such shocks might relate to an increase in

uncertainty that causes firms to temporarily pause their investing activity Bloom (2009).

Alternatively, we might think of these shocks as relating to a key invention in a sector

such as bio-tech, green-tech, or high-tech, a change in future industry growth expectations

or a government proposal to improve technology in an area.

8The global games literature started by Carlsson and van Damme (1993), and used in interesting papers such as
Morris and Shin (1998) and Goldstein and Pauzner (2004) allows the user to create and alter parameters that affect
which of multiple equilibria holds. It is useful for demonstrating theories about when and why the equilibrium may
jump. However, we take the shock to be exogenous because we are interested in looking at the investors’ response
given the jump rather than focusing on the reasons for the jump.
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C. Exit values

The final aspect of the setup defines the relationship between the signal and exit value.

In our setup, firm exit value will depend on the future financing environment or signal. In

appendix A.A1 we formally demonstrate how equilibrium negotiations in an acquisition are

impacted by a poor financing environment. The intuition is that lower outside options for

the target, and lower competitive pressures for the acquirer, in the event that negotiations

fall through, reduce the target’s bargaining power if alternative funding has dried up.9

Embedding this in the model changes no results and so for simplicity we assume a reduced

form exit value that depends on next periods signal, V (s(t+ 1)).

The future value of the firm, therefore, is V (s(t+ 1)), where V (1) > V (0) if a signal in

period t + 1 of 1 will result in investment and a signal in period t + 1 of 0 will result in

no investment. However if investors will always invest or never invest, independent of the

signal, then V (1) = V (0).

D. Equilibrium

We hypothesize (and later confirm) that there are at least two symmetric pure strategy

subgame perfect Bayesian equilibria - one in which VCs choose to fund a viable project

and one in which they do not.10 The existence of a rational expectations equilibrium boils

down to a fixed point mapping, where the first step is a state-contingent mapping of every

individual’s belief (about the actions of other players) to his own action. The second step

is a state-contingent mapping of all individual actions onto the individual belief vectors.

Our equilibria will be similar to the “sunspot equilibria”, see Chatterjee, Cooper and

Ravikumar (1993).11 However, we extend this idea as our equilibria are across time –

9A signal that results in the belief that investors are less likely to invest next period, s(t) = 0, could alternatively
reduce the value of the firm today if, for example, nervous employees reduced effort or looked for other jobs, or
customer’s delayed purchases, or other channels. We present the main idea with an acquisition channel but other
ideas would reinforce our findings.

10Note that since no information is hidden nothing is learned from off equilibrium path actions. An investor who
sees a negative NPV investment made does not alter his belief in the probability of future investment because VCs
are assumed equally informed and each VC is small enough that their effect of the aggregate probability of funding
is negligible. Equilibria are thus invariant to small fluctuations in the behavior of any one player.

11See also Diamond (1982), Cooper and John (1988)), and the big push literature (see Murphy, Shleifer and
Vishny (1989), and a review by Matsuyama (1995)). In this work and in Shleifer (1986), positive externalities
between investments create the possibility of both a low and a high equilibrium that depends on the self-fulfilling
expectations of investors. However, in our paper there are no externalities between investments and instead it is
the required coordination between investors across time on the same investment that creates the possibility that
an exogenous shock to financial markets can cause rational investors to stop investing in a way similar in spirit to
Acharya, Gale and Yorulmazer (2011).
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beliefs are about the actions of future players rather than about other players’ simultaneous

actions. That said, what is interesting about our work is not that we can create “sunspot

equilibria” but that we show how investors in different types of projects respond to and

prepare for these potential shocks.

Since all VCs are rational they will invest if the expected NPV of the project is positive.

Let Πt

∣∣
s(t)=1

represent the NPV of the project when the signal is 1 and let Πt

∣∣
s(t)=0

represent the NPV of the project when the signal is 0. Recall that for now each VC only

has enough money to support the project for one period and we are not yet allowing them

to pool together or increase their investment in response to the potential financing risk.

The extensive form of the game is shown in figure 1.

 

 1 − 𝛾𝑤 − 𝛾𝑙 − 𝛾𝑎  

𝛾𝑤  

NPV = Π𝑡|𝑠 𝑡  

Invest x ?  

Failure, 0 

Success, W 

𝛾𝑎  

Acquisition 

Negotiations, 

V(s(t+1)) 

𝛾𝑙  

NPV = Π𝑡+1|𝑠 𝑡+1  

Invest x ?  
 1 −  𝛾𝑤 − 𝛾𝑙 − 𝛾𝑎  

𝛾𝑤 

Failure, 0 

Success, W 

𝛾𝑎 

Acquisition 

Negotiations, 

V(s(t+1)) 

𝛾𝑙 

NPV = Π𝑡+1|𝑠 𝑡+1  

Invest x
 
?  

Figure 1. Extensive Form Representation of the Model

Conditional on a rational forecast of the VCs’ actions in the future, each investor

maximizes their wealth, and the NPV of the project in period t can be written as

Πt

∣∣
s(t)

=
1− γl − γa

1 + r

[
ZΠt+1

∣∣
s(t+1)=1

+ Y max[Πt+1

∣∣
s(t+1)=0

, 0]
]

+
γa

1 + r
[ZV (s(t+ 1) = 1) + Y V (s(t+ 1) = 0)]− x (2)

where Z = s(t)θ + (1 − s(t))(1 − φ) and Y = s(t)(1 − θ) + (1 − s(t))φ. Note that if
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Πt+1

∣∣
s(t+1)=0

< 0 then the future VCs will not invest if the signal is zero and the max

ensures they earn zero in this case rather than a negative amount.12

The above equation demonstrates the effect of the forecast of the VC on the current

NPV. Comparing equation (2) when s(t) = 1 to the same equation when s(t) = 0 we see

that the NPV when the current signal is zero may be impacted in two ways. First, if

the firm neither exits nor fails and if investors believe that future investments will only

get done if s(t + 1) = 1, then s(t) = 0 lowers the chance of accruing value from all

future investments because Πt+1

∣∣
s(t+1)=1

is now multiplied by (1−φ) which is less than θ.

Second, if investors believe that future investments will only get done if s(t+ 1) = 1, then

V (s(t+ 1) = 1) > V (s(t+ 1) = 0), so that the signal impacts firm value in the event of a

negotiation. This is because the probability of getting the higher value, V (s(t+ 1) = 1) is

believed to be less when s(t) = 0, since (1− φ) is less than θ.

Exploiting the stationarity in the model, Πt

∣∣
j

= Πt+1

∣∣
j
, we can solve for the expected

NPV if investors believe that if s(t+ 1) = 0 then future investors will not invest:

Π
∣∣
s(t)

=

[
s(t) + (1− s(t))(1− φ)(1− γl − γa)

1 + r

]
γa[θV (1) + (1− θ)V (0)]− x(1 + r)

(1 + r)− θ(1− γl − γa)

+ (1− s(t))
[
γa[(1− φ)V (1) + φV (0)]

1 + r
− x
]
. (3)

This is the key equation because it incorporates how the beliefs impact the investors

expected NPV.13 This leads directly to our understanding that the shock can result in a

funding failure for some, but not all, firms.

PROPOSITION 1: Given the belief that s(t + 1) = 0 means no future investment and

s(t+1) = 1 implies future investment, firms can be grouped into three categories of funding

equilibria:

• If Π
∣∣
s(t)=0

≥ 0 investors always fund the firm even if s(t) = 0.

• If Π
∣∣
s(t)=1

< 0. investors never fund the firm even if s(t) = 1.

12Recall that for simplicity we suppress γw (assume γw = 0) as an alternative exit is not relevant and we focus
only on the potential acquisition.

13We can, of course, also solve for the expected NPV if investors believe that if s(t+ 1) = 0 then future investors

will invest, which is just the standard NPV calculation
γaV−x(1+r)
r+γl+γa

. Note that V is not a function of a signal because

if the project is believed to receive funding even after the bad signal then V is the same with either signal.
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• If Π
∣∣
s(t)=1

≥ 0 > Π
∣∣
s(t)=0

then there are two symmetric pure strategy subgame perfect

Bayesian equilibria (given the beliefs), one in which investors invest when s(t) = 1,

and the second in which investors do not invest when s(t) = 0.

Firms whose funding depends on the signal have parameter values such that γa[θV (1) +

(1− θ)V (0)] > x(1 + r)and

γa[θV (1) + (1− θ)V (0)]− x(1 + r)

(1 + r)− θ(1− γl − γa)
<
x(1 + r)− γa[(1− φ)V (1) + φV (0)]

(1− φ)(1− γl − γa)
. (4)

PROOF:

See Appendix A.A3

It is only rational for a VC to forecast that a future VC will invest if it is an NPV

positive investment, Π
∣∣
s(t+1)=1

≥ 0. On the other hand, it is only rational to forecast

other VCs will not invest if Π
∣∣
s(t+1)=0

< 0. Therefore, for the shock to have impact it

must be the case simultaneously that Π
∣∣
s(t+1)=1

≥ 0 and Π
∣∣
s(t+1)=0

≤ 0. Thus, a firm

that is ‘good enough’ (high enough V (1) or γa, for example) will get funded whether or

not the shock occurs. In this case a forecast of no funding is not rational. For other

‘weak’ firms the firm never receives funding as it is always NPV negative. But there are

some firms where the shock is important because when future funding is less likely the

firm NPV drops from positive to negative. For these firms, φ must be large enough such

that the shock is not forecast to end so quickly that it is always NPV positive to keep

investing through the ‘bad’ (low signal) times. If it is then firms are not affected by the

shock. Essentially, inequality (4) says that if s(t) = 0, the gain that may occur if the

signal switches back to 1 must be less than the cost of of keeping the firm alive in ‘bad’

times.

For the shock to be important, the project must change from positive to negative NPV

in period t based on the (rational) forecast for funding availability in (t+ 1). This is not

as straight forward as it sounds. For example, if the ‘project’ is simply a series of NPV

positive coin flips then failing to get funding tomorrow will reduce the total NPV of the

project, however, it will still be positive NPV. Thus, the investor today should still pay to

see the coin flipped, and so should the investor tomorrow thus making the forecast of no

future financing incorrect. The only way for a ‘no-invest’ forecast to be correct is if the
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forecast fundamentally alters today’s payoffs. Appendix A.A2 demonstrates why a model

in which investors simply forecast the potential not to receive funding and thus lose the

future project payoffs cannot rationally contain financing risk.
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Figure 2. Equilibrium Regions - In all graphs the paramatures that are not graphed take the following

values V (0) = 100, V (1) = 300, x = 100, r = 0.1, θ = 0.8, φ = 0.8, γa = 0.5, γl = 0.2

Figure 2 graphs the three regions to provide more intuition about the tradeoffs. In the

top left we document how the relative difference between V (1) and V (0) relate to the

three funding equilibria we outline above (holding other parameters constant). The lower

dashed line traces out the points for which Π
∣∣
s(t)=1

= 0. Firms above the dashed line

get funding when s(t) = 1. All points below this line are ones for which Π
∣∣
s(t)=1

< 0.

That is, firms in region A are so weak that they do not receive funding even if s(t) = 1.

These are firms that never receive funding. The bold line traces out the points for which

Π
∣∣
s(t)=0

= 0. Firms above the bold line in region C get funding even when s(t) = 0. That
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is, these firms are so good that they receive funding even if s(t) = 0. Region B, below

the bold line and above the dashed line, is of particular interest. Firms in region B are

ones that are funded when s(t) = 1 (since they are above the dashed line) but do not get

funding if s(t) = 0 (since they are below the bold line). These firms are susceptible to

financing risk as their funding is contingent on the state. The graph shows an intuitive

point. As V (0) (the baseline value the firm gets in an acquisition even if s(t + 1) = 0)

increases, the firm does not need to have a significantly higher V (1) in order to always

be financed. That is, financing risk is more salient for firms where V (0) is relatively low.

These firms will be particularly susceptible to financing risk unless V (1) is so high that

the expected value of funding the firm in always NPV positive.

The top right of Figure 2 plots V (1) against x. Note that the Y axis is truncated at

100 because in this graph V (0) has been set to 100 and hence any V (1) below 100 is not

economically viable. As with the top left graph, firms in region A are never funded, firms

in region C are always funded, those in region B are funded with s(t) = 1 but not funded

when s(t) = 0. This figure highlights that as x rises, the expected loss from continuing to

invest in the event that s(t+ 1) = 0 becomes more significant, making more firms unlikely

to be funded. This is true even when s(t) = 1 since there is a 1− θ chance that s(t) = 1

transitions to s(t+ 1) = 0. Although a higher V (1) counters this effect, the graph points

out that the implications of a shock are much more important when x is high. This is

consistent with biotechnology and clean-technology venture capital investors being much

more concerned about financing risk than VCs who funded consumer internet startups.

The lower left of Figure 2 plots V (1) against γa. As the γa approaches 0, that is the

probability of ever being acquired approaches 0, startups become unviable. In this example

γl has been set to 0.2, so that γa cannot be greater than 0.8. The reader may wonder why

the bold and dashed line do not cross when γa = 0.8. This is because even though the

firm will either be acquired or fail, the expected value when acquired is a function of the

state.

The lower right of Figure 2 plots V (1) against 1 − θ. It shows that as 1 − θ increases,

firms require a higher V (1) to get funded. This is because a higher 1 − θ increases the

likelihood that a shock will occur leading future investors not to invest. In this chart, φ

has been set to 0.8. Since by construction, s(t) = 1 leads to a higher forecast of a good
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funding equilibrium, it must be the case that θ < 1 − φ or alternatively that 1 − θ < φ.

Since φ is set to 0.8, in this example, the two lines cross at 0.8. This is the point at which

firms are equally impacted by the signal, since the forecast of s(t + 1) = 0 is the same

for both s(t) = 0 and s(t) = 1. Consistent with this argument, the region to the right of

1− θ > 0.8 does not make economic sense in this example as it would lead to cases where

firms are not funded when s(t) = 1 but are funded when s(t) = 0.

While the charts above plot V (1) against different parameters, another way to examine

the equilibria for different projects is to see how the NPV of the project varies as financing

risk goes up. In equilibrium different types of projects are impacted by financing risk in

different ways. Figure 3 shows how the NPV of different projects changes as financing

risk, (1 − θ), gets larger. Project 1 is unaffected by financing risk because it is so high

quality that it can get funded even after a shock. Projects 3 and 4 become less valuable

as financing risk increases, with project 4 actually becoming NPV negative if financing

risk is high enough. Project 2 is interesting because for low levels of financing risk it is

unaffected by the shock but eventually for high enough financing risk (i.e. high enough

probability of a shock) its value falls to the point where it will not get funding in the bad

state and so its NPV falls and continues to decrease with greater financing risk.
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Figure 3. NPV and Financing Risk

Although it is a relatively unique case, it is instructive to understand why the

equilibrium NPV for project 2 jumps down. Figure 4 shows why. Remember that in

equilibrium financing risk is only rational if the forecast that investors will not invest in
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the bad state is rational. It is only rational for investors to not invest in the bad state if

the project is NPV negative in that state. In Figure 4 the lowest line (large dashes) is the

NPV of investing when the forecast is for less likely future funding (s(t) = 0). However,

for low enough financing risk the NPV is actually positive even when the investor believes

(wrongly) that future funding is unlikely. In fact, since the NPV is positive whether or not

the investor believes future investors are likely to invest, the current investor should invest

regardless of the signal and so will future investors. Thus, Project 2, is initially unaffected

by financing risk. Eventually, however, the forecast that future investors will not invest

if s(t + 1) = 0 becomes correct and the NPV, even in the good state, is impacted by the

possibility of a future jump to the bad state, i.e., it is impacted by financing risk.

We have presented the equilibrium with financing risk but no exante preparation for

the potential shock. In the next section, we examine what happens if everyone expects

both a possible shock as well as a potential subsequent shock back to the high funding

state. Then we consider the equilibrium investor response to the threat of financing risk.

II. Investor response to financing risk.

Given financing risk, we must ask how investors respond to the potential risk, because

their response could eliminate the impact of the shock for some investments. We do so

in three steps. First, if the reliance on other investors is what leads to the problem,

the question arises as to whether a VC with more money or a syndicate of VCs can

overcome the no-invest equilibrium. We show this is not the case. Second, we include the
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possibility that investors can write complete contracts that cover future financing needs.

This demonstrates the optimal response in a perfect world. Finally, we consider a world

in which contracts are incomplete. It is this set up that demonstrates the trade-offs faced

by investors attempting to fund experimental projects.

A. Can a wealthier investor protect their investment from a shock?

Consider a VC who has enough capital to fund the investment for two periods. One

might imagine that this VC is less impacted by financing risk in the first period they invest

because they can be sure to invest in the next period. In this case one might think that

if s(t) = 0, the expected value of the firm in the first period is

Πt

∣∣n=2

s(t)=0
=

1− γl − γa
1 + r

[φΠt+1

∣∣
s(t+1)=0

+ (1− φ)Πt+1

∣∣
s(t+1)=1

] +
γa

1 + r
V (1)− x (5)

where the n = 2 superscript signifies that the firm has two periods of funding. This

NPV is equation (2) with s(t) = 0 but a guaranteed extra round of investment that will

occur independently of next rounds signal (because of the second x held by the VC). This

would suggest both that the investor gets Πt+1

∣∣
s(t+1)=0

(which is negative) instead of zero

because of the extra funding, and that firm value is improved from as there is no longer

a chance of getting V (0) after the first investment. If this were correct, then the NPV in

period t might be greater for a VC with enough funding for two periods.

However, backward induction applied to equation (5) demonstrates the fallacy of this

argument. Suppose that s(t + 1) = 0 and the VC needs to decide whether to invest her

second x in a firm where the NPV depends on the signal. At this point, since she only

has one x left, her investment decision is identical to the case where she only had one

x. The NPV for her investment is Πt+1

∣∣
s(t+1)=0

. However, the expectation of no future

investment is only rational if Πt+1

∣∣
s(t+1)=0

< 0. Therefore, the VC will not invest her

second x because it is an NPV negative investment. Of course, using backward induction,

the VC will realize that she will not invest the second x if s(t+ 1) = 0, and therefore, will

reevaluate her decision to invest the first x. Since the second x will only be invested when

s(t + 1) = 1, the only time that the VC would invest her second x is when others would

invest anyway. Hence, the decision to invest the first x is the same for VCs with either x

or 2x.
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This same logic applies even if we consider the possibility that a VC has more than

2x. To see this, note that the very last x that the VC has will only be spent if there

is a positive signal in that period. The VC also knows that if the ‘good’ signal has not

occurred in the period just before this last period, then 1−φ is not large enough to make

investing the second to last x a good idea (if it were large enough, it would cause VCs to

behave as if the state occurs today and hence have caused them to not be impacted by the

initial shock). Therefore, in the period just before this last period, the VC understands

that the last x will only be spent if the ‘good’ state occurs. So the second to last x is not

invested either. Continuing this backward induction eventually brings us back to the first

x.

This backward induction tells us that (in the absence of commitment) only an investor

with an amount of capital X = x
r can prevent the shock from impacting the firm NPV.14

This suggests that only very large firms with cash generating assets greater than X will not

face financing risk.15 Empirically, this implies that the variation in innovation inside large

firms who generate internal cash for R&D should be much more stable across time than

aggregate innovation produced by startup firms. Furthermore, among venture capitalists,

the largest funds that can potentially support a project to fruition without other future

investors, are also less impacted by financing risk. This conveys a strong advantage to the

largest funds that is most valuable and apparent in bad financing environments. Both of

these predictions would be interesting to look for in the data.

In the absence of commitment, until an investor or a syndicate has more than x/r (that

can generate x per period) more money will not prevent the firm from facing financing

risk. This is because future unrelated investors are already acting rationally so unless the

investors can commit to an irrational action in the future, they will act no differently from

the market. However, we will see the importance of commitment in the next section.

14An investor with capital X = x
r

can invest forever. Thus, for this investor V (0) = V (1) because they can
always guarantee another round of funding. So their bargaining power would not be affected by the bad state. If
V (0) = V (1) then the conditions for financing risk to impact the firm in Proposition 1 cannot hold.

15For example, if a new venture needed $5m each period and the discount rate, r = 10%, then only an investor
willing to dedicate $50m to this investment would not be impacted by financing risk.
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B. The Benefits and Costs of Commitment

Increasing the dollars held by one investor or forming a syndicate does not protect the

company from the shock because in each period the investment decision is made rationally

and so a syndicate or even one investor with more money makes no decision differently

than the market (until they have enough money that they never need the market again).

After all, sunk costs are sunk. Therefore, if the market is rationally not investing, then

any investor would make the same decision as the market.

However, we show that commitment to invest through a shock can change this result.

We now allow an investor to commit to invest in the next period regardless of whether

the shock has occurred.

Initially we will assume that contracts are complete and that there are no information

asymmetries – so that the investor who has committed to invest in the second period

does not invest if the project turns unviable (probability γl), but will invest if the project

is viable and the shock has occurred. Alternatively, an equivalent contract is a state

contingent contract where investors give a project 2x or more in a period and the project

commits to return any unused funds if the project becomes unviable but not if shock

occurs.

Commitment trades off the potential increase in firm value with the potential loss from

having to invest when s(t) = 0. If an investor only invests a single x then we know

from above that the expected project NPV is equation (2). If instead an investor or

syndicate commits to invest in both the first and the second period then we will refer to

the project NPV as Πt

∣∣n=2

s(t)
where the n = 2 indicates two periods of commitment (one

can think of all the NPVs above as having an implicit n = 1, although from here forward

we will explicitly indicate the number of periods of commitment). The extra period of

commitment ensures that the project will receive an investment in the next period even

if the shock has occurred, s(t + 1) = 0. This, in turn, alters the bargaining outcome of

any sale, encourages buyers to purchase, etc so value of the firm increases. Therefore, the

NPV when an investor commits to fund a project for two periods is

Πt

∣∣n=2

s(t)
=

1− γl − γa
1 + r

[YΠt+1

∣∣n=1

s(t+1)=0
+ ZΠt+1

∣∣n=1

s(t+1)=1
] +

γa
1 + r

V (1)− x (6)
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where Z = s(t)θ + (1 − s(t))(1 − φ) and Y = s(t)(1 − θ) + (1 − s(t))φ. Appendix A.A4

solves for the profits for any level of commitment n = N .

This equation differs from equation (2) in two ways. First, the value if exit occurs is

high, V (1), even if the state transitions to s(t+ 1) = 0 because funding is certain. Second,

the investor has agreed to provide financing if s(t+ 1) = 0. Therefore, if s(t+ 1) = 0, the

investor makes an expected loss since Πt+1

∣∣n=1

s(t+1)=0
< 0.

Thus, the question of whether it is better to commit to a second round of investment is a

question of whether profits with commitment are bigger than profits without. Subtracting

the two profit equations, the question is reduced to whether Πt

∣∣n=2

s(t)
−Πt

∣∣n=1

s(t)
> 0 or

Πt

∣∣n=2

s(t)
−Πt

∣∣n=1

s(t)
=

1− γl − γa
1 + r

YΠt+1

∣∣n=1

s(t+1)=0
+

γa
1 + r

Y [V (1)− V (0)] > 0 ? (7)

where Y = s(t)(1 − θ) + (1 − s(t))φ. Thus, we can see that the question becomes one of

whether or not the expected improvement in firm value if an acquirer is found, [V (1) −

V (0)], is worth the potential negative expected value investment if the signal s(t+ 1) = 0

and there is no acquisition (because Πt+1

∣∣n=1

s(t+1)=0
< 0).

The following proposition shows the impact of this trade-off.

PROPOSITION 2: Let F represent the subset of projects with parameters such that the

conditions in Proposition 1 are met for the funding to depend on the signal. If investors or

syndicates can commit to invest in future periods and contracts are complete, then for any

project in F any increase the the capital committed, n, increases the project NPV and a

large enough capital commitment, n > N̄ , makes the funding equilibrium no longer depend

on the signal, i.e. the project is no longer impacted by financing risk.

PROOF:

See Appendix A.A4

By committing to a third period of investment the investor essentially ‘puts off’

potentially having to make the negative NPV investment by one period. Simultaneously

committing more improves the projects value (by improving its bargaining power) for

all periods of commitment. Thus, eventually by committing to fund the project for

enough periods the bargaining improvement outweighs the ever more unlikely negative

NPV investment. The negative NPV investment becomes less and less likely because a
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firm with more money is more likely to be acquired or fail before it runs out of money -

and it is only when the project has little money that it becomes negative NPV.

Therefore, large investors and syndicates can actually increase the NPV of the projects

they fund by giving them more dollars or implicitly or explicitly committing to fund them

for longer. Enough committed dollars make the project NPV positive even if financing

risk is high. For these projects commitment eliminates the impact financing risk.

The logic above would seem to suggest that all projects should get significant upfront

funding. However, as noted above, we have so far assumed that an investor or syndicate

that commits to fund a project can withdraw funding if the project becomes unviable, i.e.

the commitment only relates to the state of the world and not to the project quality.

The analogous venture capital contract is a tranched investment, in which the investors

have committed to fund a project if certain milestones are reached. These type of contracts

provide the investor with a real option, but we believe they are also an attempt to overcome

financing risk as they commit the investor to invest if the company has done well even if

the world has done poorly. However, they rarely cover more than one future financing,

and for many projects (particularly innovative ones), it is very difficult to articulate and

delineate a clear milestone. Thus, it is unrealistic to assume that complete state-contingent

contracts can be written for all future funding dates at the start of a project. The next

section explores the trade-offs under the more realistic scenario of incomplete contracts.

C. Incomplete Contracts and the Lost Real Option

This section explains why this paper is ultimately about experimenting/innovative/high

real option firms. In a realistic setting with incomplete contracts across time we will see

a fundamental tradeoff in the amount of money provided to innovative firms that leaves

them impacted by financing risk in equilibrium.

Complete contracts are unrealistic as investors cannot contract on every future funding

need at the start of a project. In this section, we assume that contracts are incomplete.

This is similar to Grossman and Hart (1986) and Hart and Moore (1990), however, while

they require non-contractibility of prices we only assume a more limited non-verifiability

of states. We assume that it is not possible to either write down or verify all future states

in which funding should or should not occur. For example, it might be the case that
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states of nature are observable by the investors but not verifiable by a court. Specifically

we define an incomplete contract as follows.

DEFINITION 1: In an incomplete contract, investors cannot contract on actions that

differ between a shock, s(t+ 1) = 0, and a project becoming unviable, (which happens with

probability γl).

We continue to assume commitment is enforceable, as in the last section, but now,

without complete contracts, investors are not able to write contracts that release them

(or return unused capital) when bad firm specific information arrives. We further add

the assumption that entrepreneurs have a private benefit of control and thus benefit from

continuing the firm.16 Therefore, without a contract that requires the entrepreneur to

shut down given bad information the project will continue until it is out of money. This

is essentially the assumption that an entrepreneur with more money will spend more and

at least some of it in a wasteful manner.17

If the money given to a firm will be spent, then giving more money to a firm destroys

some of the value of the firm’s real option to shut down in the event that intermediate

information is not positive. On the other hand, more money better protects the firm from

the negative shock.

In our model the real option value in a firm depends on the probability that a firm

loses viability before it is sold. If γl = 0 the firm is always viable and there is no real

option value in shutting the firm down (as it never needs to be shut down). However,

for higher values of γl it becomes valuable to give the firm less up front funding (smaller

commitment) and wait to learn that it is still a viable firm in the next period. So holding

the NPV of a firm constant, a firm with a greater γl has more option value, i.e., it is more

valuable to be able to abandon the project.

Thus, a firm with greater γl is more ‘experimental’ in that it is more valuable to run

this firm by trying things and waiting to see the outcome. We argue that more innovative

projects require a greater need to test or experiment before proceeding, as well as more

early stage firms. Thus, another way to state this proposition is that we are demonstrating

16It is not hard to believe that since it is not their money, entrepreneurs/employees might like to continue past
when investors would like to shut down.

17The main tradeoff is the same if only a fraction of the committed money would be spent after the arrival of
bad news.
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the effect of financing risk on investors’ willingness to finance innovative firms.

We can see the effect of incomplete contracts and real options on the profitability of

committing extra dollars to a firm. In section II, when we assumed complete contracts, the

profit from committing to invest an extra x was equation (6). With complete contracts, the

investor would not lose the second committed x if the project lost viability. Now, however,

committing 2x requires the investor to lose the second x if the project fails (i.e., it will be

spent by the entrepreneur). Thus, the expected profit from committing 2x becomes

Πt

∣∣n=2

s(t)
=

1− γl − γa
1 + r

[YΠt+1

∣∣n=1

s(t+1)=0
+ ZΠt+1

∣∣n=1

s(t+1)=1
] +

γa
1 + r

V (1)− x(1 +
γl

1 + r
) (8)

where Z = s(t)θ + (1− s(t))(1− φ) and Y = s(t)(1− θ) + (1− s(t))φ.

The difference between the profit function with complete contracts equation (6) and

without is the option value of potentially abandoning the project after one period instead

of funding it for two. This equals γl
1+rx. Another way to say this is that it is the additional

cost to commitment when the money will be spent even if the firm fails. This leads directly

to our next proposition

PROPOSITION 3: Incomplete contracts reduce the value of committing more money and

the reduction in value is larger for firms with larger γl and x, i.e., more experimental firms

with more costly experiments who have more real option value. Furthermore, for firms with

large enough x and γl increasing commitment can change it from a positive to a negative

NPV project.

PROOF:

See Appendix A.A5

The central insight comes from comparing the profit equations with and without

complete contracts. Note that if γl = 0 there is no real option value and no difference

between the profit functions.18 However, with incomplete contracts, holding the NPV

constant, the larger γl becomes the more valuable it becomes to give the project only one

period of funding to see if it fails. This is exacerbated the larger the required investment

18With γl = 0 there is no chance the project will fail so commitment only effects the No-Invest state of the
world. Thus, when γl = 0 then just like in the last section, commitment trades off the cost of investing during the
No-Invest equilibrium with the potential increase is sale price from doing so. But committing enough money always
eliminates the No-Invest equilibrium.
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x. Thus, commitment becomes more and more costly. Investors who give a firm enough

funding to fully protect it from the shock lose the option to give the firm a little funding

and wait to see how it performs to give it more. Therefore, it is more costly to protect

innovative projects with high real option value from the shock. Less innovative firms can

be given a larger amount of upfront financing in order to prevent the shock from affecting

them. But the most innovative firms cannot be given significant funding up front or

the loss of the real options may change it to an NPV negative project. Therefore, more

innovative firms should receive less funding up front and are more exposed to financing

risk.

For example, compare the funding of a coal power plant to a novel bio-fuel power plant.

The established coal technology needs no experimentation and can be built at scale. The

financing for a project like this can be committed at the start and so it is unaffected by

future financial market conditions. However, a new bio-fuel refinery where the yields are

unproven requires pilot tests and demonstration plants before being adopted at scale. In

a perfect world, complete contracts could allow investors to commit to fund the full-scale

project at the early stages of innovation. However, to the extent that this is not possible

the project will be forced to raise funding at each stage - exposing it to market shocks.

Investors may try to form a large syndicate or provide more substantial upfront funding,

but they will find it NPV negative to commit to fund the entire project ex-ante. Thus,

the more a project has a wait-and-learn-more aspect to it the more it will face a trade-off

between maximizing real option value and defending against financing risk.

We specifically model the option to abandon the project. However, our ideas and results

relate to all types of real options, like an expansion option, where it is optimal to wait to

provide more money. Any delay in fully funding all the potential project needs exposes

the firm to financing risk and creates a trade-off between protecting against financing risk

and maximizing real option value.

Thus, in a world with incomplete contracts, less innovative firms are not hurt as much

by the prospect of financing risk. Instead it is the innovative end of the economy that

is most impacted by waves of investor interest and disinterest in the sector. This does

not require any behavioral explanation, although the effect could certainly be magnified

by behavioral considerations. Rational investors know they face financing risk. They
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rationally try to mitigate that risk by forming syndicates and providing larger sums of

money up-front. But for more innovative firms providing more money reduces the option

value of the investment. Thus, innovative projects must be left exposed to the whims of

the financial market.

III. Implications

A. Innovation, Project Mix and Financing Risk

A key implication of our model is that we should see high and low levels of innovative

activity that are driven by shocks in the capital markets.

Investors attempt to protect their firm from the effect of a financial market shock by

committing more money to a firm up front, but the more innovative the firm the more

likely early failure may occur and the more costly it is to commit significant money up

front.

Any increase in financing risk19 lowers the NPV of all firms that that are impacted by

financing risk. If this occurs some firms will become NPV negative with their current level

of commitment. At which point some of these firms will be unable to get funding while

other firms may find it value enhancing to raise more money and thereby reduce the value

of some of their real options but defend better against the potential shock.

0.5

1

1.5

2

N
P
V
 o
f 
P
ro
je
ct

Project 3, n=1

Project 3, n=2

Project 4, n=1

‐1

‐0.5

0

0 0.1 0.2 0.3 0.4 0.5

Financing Risk (1‐θ)

Project 4, n=2

Figure 5. Financing Risk and Increased Funding

Consider projects 3 and 4 in figure 5. The only difference between them is that project

3 has a lower probability of failure. With no financing risk both projects have a higher

19A decrease in θ or an increase in φ.
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NPV if they raise only one unit of financing (on the left side of the graph the lines with

n = 1 are higher than the corresponding n = 2 lines). However, as financing risk increases

eventually Project 3 creates more value by raising two units of capital, but project 4 is

always worth less if it raises an extra unit of capital. This is because it is more costly for

project 4 to raise an extra x because it is more likely to fail, i.e., it is more valuable to take

a wait-and-see approach even though this leaves the project exposed to more financing

risk. Eventually, if financing risk gets high enough, project 4 will not raise even one x

because it becomes NPV negative.

The most innovative sectors or places, will have firms where interim failure is high

and a wait-and-see approach is important. These firms will be unable to raise significant

up-front financing because too much value is destroyed in the loss of their real options. So

in times when financing risk is low, more firms will be financed and the mix of financed

firms should become more innovative.

Aggregating this effect up across all firms we would expect times of increased innovation

to come from times of increased experimentation by investors. Thus, lower financing risk

should lead to a more innovative group of new ventures being funded and therefore, to more

innovation. In fact, using data on patent filings for venture capital backed firms, Nanda

and Rhodes-Kropf (2013) find evidence that is consistent with this view. In a related test

Li (2011) reports that financial constraints only negatively impact R&D intensive firms.

Our work suggest that this is because only experimental firms cannot be fully protected

from the impact of financing risk.

Relatedly, direct measures of innovation such as patenting occur in great waves of

activity (see Griliches, 1990). There are many explanations for why innovative output

might cluster in certain periods of time even though we expect ideas to occur at random.

The classical explanations focus on sudden breakthroughs that lead to a cascade of

follow-on inventions (e.g. Schumpeter, 1939; Kuznets, 1940; Kleinknecht, 1987; Stein,

1997) or on changes in sales and profitability (or potential profitability) that stimulate

investment in R&D and then drive concentrated periods of innovation (e.g. Schmookler

(1966)).20 While these traditional explanations clearly have merit, combining our model

of financing risk with the direct evidence on the link between financial market activity and

20See Stoneman (1979) for a discussion of the supply versus demand considerations.
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innovation (Kortum and Lerner (2000), Mollica and Zingales (2007), Samila and Sorenson

(2011)) suggests that financial markets may play a much larger and under-studied role

in the creation and magnification of innovation waves in the real economy. Financial

market activity may drive concentration in the commercialization of innovation, even if

the inventions occurred at random.

B. Funding Levels and Financing Risk

We can see from figure 5 that as financing risk increases, some firms may be unable to get

financing but others will actually raise more money. This results in a surprising prediction

that matches anecdotal evidence: when financing risk is high, many experimental firms can

no longer get financing but the few that do get funding actually get more funding. When

venture capital investing dried up in 2009, anecdotal evidence suggests that investors told

some firms that they would only invest if the firm took an extra large amount of money

relative to their annual capital need to make sure they would not have to come back to

the financial markets for an extended period. Thus, while many firms were finding it

impossible to raise money others were being asked to take enough for multiple years.

So our empirical prediction is that less total money will enter a sector during ‘bad’

times, and fewer firms will get funded, the few firms that get funded will be well funded

relative to their annual spending.21

C. Firm Stage and Financing Risk

The above model can be redone with multiple hurdles or stages. For example a project

might have to first prove it works (hurdle A) and then prove it can be mass produced in

a low cost fashion (hurdle B). Firms at different stages might need different amounts of

funding, xA and xB, and have different probabilities of acquisition and failure, γAa ,γAl ,γBa

and γBl , where success at stage A means the ability to attempt stage B.22

It is likely that for most projects the earlier the stage of the project the more likely it

is to fail (i.e. γAl > γBl ). Since Proposition 3 demonstrates that the value of committing

more capital is lower for firms with larger probabilities of failure, it is the early stage firms,

21Note we are not suggesting that firms will get more funding in bad times, only that those that get funded
should have more funding relative to their expenses so they can better survive the funding drought.

22This model has also been solved by the authors and all above propositions hold and is available upon request.
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on average, that are less able to defend against financing risk and are more impacted by

it. Therefore, early stage firms should get less funding (relative to burn rate) than later

stage firms and should have to go back for financing sooner. Furthermore, as financing

risk changes through time we should see a larger fluctuation in the birth of early stage

firms and funding for early stage firms relative to later stage projects.

We can imagine projects with more than two stages. Projects with stages A, B, C, D,

etc, face more financing risk than a project with only one stage (holding other parameters

constant) and has more chances to fail. Essentially projects with only one stage can be

more certain they have the money they need when they start relative to a project with

many hurdles to jump. This suggests that projects that require more money spent over

longer time frames face greater financing risk.

D. Investor Mix and Financing Risk

Lower financing risk lowers the amount of capital firms need and should therefore also

allow smaller investors with more limited capital to invest. Our model therefore suggests

that in good times the mix of investors should shift towards investors with less capital. In

bad times, a large investor might be able to give a firm more support and protect them

from the financing shock but small investors don’t have this option and must therefore

stop investing (Janeway, 2012). In the low investing times small, so-called angel, investors

should significantly reducing investing relative to larger investors, assuming, of course,

that the coordination costs to bring together enough small investors is too high. So larger

investors should more consistently invest across time.

E. ‘Herd Behavior’ in Innovative Investments

Conventional wisdom (and most past work) suggests that contrarian strategies might be

good because a flood of money lowers the discipline of external finance and allows lower

quality projects to get capital (Gompers and Lerner, 2000; Nanda, 2008). Our model

implies that this is not true in every case. In our model, fully rational investors who only

make NPV positive investments are optimally entering the market when prices are high

(because the financing risk is low) and there is increased investing activity. When financing

risk is low, it is optimal to give a firm less money and see how it does. Smaller investors who
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face greater hurdles to forming large pools of money can find valuable investments in high

real option companies that need only a little money but only during good times. Making

this same investment when the probability of future funding is low is NPV negative. Thus

for innovative projects with high real option value, it may actually make sense to invest

with the crowd.

The corollary to this view also provides a more positive interpretation to the increase

in capital that is associated with the initial diffusion of very radical new technologies,

such as railways, motor cars, internet or clean energy technologies. Our model implies

that such technologies may in fact need ‘hot’ financial markets, where financing risk is

extremely low and many investors are in the market, to help with the initial diffusion of

such technologies.

IV. Conclusion

Startups have been associated with the initial diffusion of several technological

revolutions (railway, semiconductors and computers, internet, motor cars, clean

technology) and there is increasing evidence of the important role of startup firms in

driving aggregate productivity growth in the economy (Foster, Haltiwanger and Syverson

(2008)). This paper builds on the emerging research examining the role of the capital

markets in driving innovation in the real economy (Kortum and Lerner (2000), Mollica

and Zingales (2007), Samila and Sorenson (2011)) and provides a mechanism for why

investors may increase experimentation during some periods. We depart from the view

that financial market activity is purely a response to novel technologies and suggest instead

that financial markets drive innovative activity.

We argue that a particular feature of innovative startups is that they don’t know how

much investment will be required to get to the ‘finish line’. Intermediate results may be

equivocal, or additional investments may be required to get to cash flow positive. Any

investor in such startups with limited resources must therefore also rely on other investors

to bring innovative firms to fruition.

Because of this, such startups face two risks - fundamental risk (that the project

gets an investment but turns out not to be viable) and financing risk (that the project

needs more money to proceed but cannot get the financing even if it is fundamentally
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sound). Financing risk is typically ignored in the literature because all firms with positive

fundamental NPV are assumed to get funded. This ignores the fact that investing

requires coordination across time between investors with limited resources. Investors must,

therefore, forecast the probability that other investors will be there to fund the firm in the

future. A low forecast in the probability of future funding reduces the NPV of the project

and makes the decision not to invest rational. Thus, financing risk is part of a rational

equilibrium.

The impact of financing risk on a firm can be reduced by giving the firm more funding.

However, this comes at a cost. A firm with more funding may spend some or all of the

money even in the event of disappointing intermediate information. This cost is greater

for highly experimental firms where the real option to shut down the firm is most valuable.

The more valuable the real option to shut down a firm, the less funding the firm should

receive at a given time. Firms that receive less funding are more affected by a financing

shock. Thus, early round investors investing in innovative firms face an important trade-off

between lowering financing risk and increasing real option value. The most innovative firms

are thus most susceptible to financing risk as they are least able to acquire a ‘war chest’

to survive a down turn.

We show that financing risk is inherent to the funding of innovative new ventures

and demonstrate its impact. We argue that the most innovative firms, or those in the

early period of a technology adoption, may need ‘hot’ financing environments to help

with their initial financing or diffusion. This implies that a fundamentally different,

more innovative type of project will be funded in ‘hot’ rather than ‘cold’ markets. By

driving experimentation, financing risk may play a key role in creating and magnifying

technological revolutions and the process of creative destruction.
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Mathematical Appendix

A1. Bargaining Model of V (1) > V (0)

In this section of the appendix we model the acquisition negotiations. With probability

γa a potential strategic acquirer arrives who values the firm at Π̂ (the ĥat will signify

the acquirer throughout the appendix).23 The potential acquirer and target negotiate the

price for the transaction. The negotiation, if consummated, results in the target receiving

a price V (s(t+ 1)) (t+ 1 denotes the fact that the negotiation takes place one period after

the initial investment at time t). To determine the sale price we use the Nash bargaining

solution, so the transaction price will depend on the potential acquirer’s value and the

opportunity cost if either side walks away from the deal.

Acquisition negotiations under the Nash bargaining solution depend on the potential

acquirer’s value and the outside opportunities of each party. If the target walks away from

the negotiation, the target is worth the NPV from continuing to look for investors and an

acquirer, Πt+1

∣∣
s(t+1)

. Under the assumption that max[Πt+1

∣∣
s(t+1)=0

, 0] = 0 (the project

will not be financed if the signal is zero), the target’s outside option or reservation value

can be written as s(t + 1)Πt+1

∣∣
s(t+1)=1

because if s(t + 1) = 0 then the target’s outside

option becomes zero. If the potential acquirer does not purchase the target then they

earn nothing. If, however, the firm is sold to a different acquirer when not purchased by

this potential acquirer then the potential acquirer’s value is reduced by λΠ̂. Since this

loss only occurs if the project is sold to someone else, the expected loss depends on the

company receiving enough financing to stay alive to be sold to someone else in the future.

Therefore, the expected cost to the potential acquirer if he does not purchase the target

is

Ĉt
∣∣
s(t)

=
1− γl − γa

1 + r
[ZĈt+1

∣∣
s(t+1)=1

+ Y Ĉt+1

∣∣
s(t+1)=0

] +
γa

1 + r
λΠ̂ (A1)

And under the belief that the target will not get financing next period if s(t+ 1) = 0 this

23One might think the probability of arrival is less than one because it is costly and time consuming for potential
acquires to find and determine their value for a target (particularly small private targets), so potential acquires only
arrive in a given period with probability γa. The idea that acquires and target’s must search for one another is fully
developed in Rhodes-Kropf and Robinson (2008).
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expected cost becomes

Ĉt
∣∣
s(t)

=
1− γl − γa

1 + r
ZĈt+1

∣∣
s(t+1)=1

+
γa

1 + r
λΠ̂ (A2)

Therefore, exploiting the same stationarity in the model, the potential acquirer expects

to lose

Ĉ
∣∣
s(t)=1

= − γaλΠ̂

(1 + r)− Z(1− γl − γa)
(A3)

or Ĉ
∣∣
s(t)=0

= 0. These assumptions allow functional forms for V (0) and V (1).

The set of possible acquisition agreements, V̂ (s(t+ 1)) for the acquirer and V (s(t+ 1))

for the target is

v = {(V̂ (s(t+1)), V (s(t+1)) : s(t+1)Πt+1

∣∣
s(t+1)

≤ V (s(t+1)) ≤ Π̂−s(t+1)Ĉ
∣∣
s(t+1)=1

and V̂ (s(t+ 1)) = Π̂− s(t+ 1)Ĉ
∣∣
s(t+1)=1

− V (s(t+ 1))} (A4)

where s(t+ 1) ∈ [0, 1].24 Note that the acquirer’s expected loss, Ĉ
∣∣
s(t+1)=1

if next period’s

signal is 1, is multiplied by s(t + 1). This is because the potential acquirer only expects

losses if the firm continues when it is not bought which can happen only if the firm gets

funded.

Using the well known Nash bargaining solution, the equilibrium split is just25

V (s(t+ 1)) =
1

2
(Π̂− s(t+ 1)Ĉ

∣∣
s(t+1)=1

+ s(t+ 1)Πt+1

∣∣
s(t+1)=1

) (A5)

where Ĉ
∣∣
s(t+1)=1

is defined by equation (A3), and Πt+1

∣∣
s(t+1)=1

is defined by equation (3).

Substituting in using equation (A3) and (3) we find

V (s(t+ 1)) =
1

2
(Π̂ + s(t+ 1)

γaλΠ̂

(1 + r)− θ(1− γl − γa)

24Note that since the potential acquire expects to lose some value if they face the target as a competitor, they

are willing (but may not have to) pay more than Π̂ to acquire the target to prevent the loss i.e. Ĉ is a negative
number.

25More generally one might expect that if the firm could not find future funding its bargaining position might
be affect in ways other than just through the reservation values. In the generalized Nash bargaining solution, for
example, one might think the bargaining power exponent parameters also shifted to favor the acquirer. This effect
would magnify the results presented here.
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+ s(t+ 1)
γa[θV (1) + (1− θ)V (0)]− x(1 + r)

(1 + r)− θ(1− γl − γa)
) (A6)

Therefore, V (0) = Π̂/2. And we can solve for V (1).

V (1) =
1

2
(Π̂ +

γaλΠ̂

(1 + r)− θ(1− γl − γa)
+
γa[θV (1) + (1− θ)Π̂/2]− x(1 + r)

(1 + r)− θ(1− γl − γa)
) (A7)

Reduces to

V (1) = Π̂/2 +
Π̂(γaλ+ γa/2)− x(1 + r)

2(1 + r)− 2θ(1− γl − γa/2)
(A8)

And we can see that V (1) > V (0) as long as Π̂(γaλ+γa/2) > x(1+ r) and the project will

not get funding if s(t+ 1) = 0. However, if the project will get funded even if s(t+ 1) = 0

then V (1) = V (0) and both are defined by equation (A8).

A2. Proof that a simpler model wont have financing risk:

Some readers may feel that financing risk could be generated with a simpler model -

after all, ignoring any effects from sale negotiations, couldn’t a project turn NPV negative

if early investors forecast no future investors will support it? Yes, however, such a belief

would be irrational and in the future investors would rationally support it. Thus, this kind

of model would NOT have rational equilibrium financing risk. Although our implications

and results do hold in a world with irrational financing risk, our model helps demonstrate

that no irrationality is needed, which has important implications.

To demonstrate that a simpler model would not work consider the following model.

A project with NPV Π pays off V with probability p and with a probability (1− p) it

needs another x. Investing x buys the investor a fraction q. A rational investor will invest

as long as the fraction q ≥ x
Π+x .

If investors forecast a No-Invest state then they will invest as long as x ≤ qpV . This is

because the present value of the project is pV so they invest if their fraction q of the PV

is greater than the cost, x.

If investors forecast an Invest signal next period followed by the no invest signal then

an investor who invests x for fraction q expects to receive qpV + (1− p)(1− q)qpV , that

is, if it pays off in the first attempt (prob p) they get qV and if it pays off on the second

attempt (prob (1 − p)p)they get a fraction q of what doesn’t go to the second investor
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(1−q)V . Therefore, the first investors would invest as long as x ≤ qpV +(1−p)(1−q)qpV .

And if investors forecast infinite Invest signals then the first investor would invest as long

as x ≤ qpV +(1−p)(1−q)qpV +(1−p)(1−p)pq(1−q)(1−q)V +... = qpV
∑∞

i=0(1−p)i(1−q)i

which equals pV q
1−(1−p)(1−q) .

It might then seem that as long as (1− p)(1− q)qpV > 0 that some parameters would

result in a world where x ≥ qpV but x ≤ qpV + (1 − p)(1 − q)qpV so investors would

invest only if they forecasted future investment, and thus there would be financing risk.

Or x ≥ qpV but x ≤ pV q
1−(1−p)(1−q) , which would again result in financing risk.

However, this is not correct.

If x ≥ qpV the q endogenously increases until the first round investor invests (x ≤ q′pV )

or q or hits 1. That is, firms that are about to fail because the cant get funding increase

the fraction they are willing to give to get funded. Thus, the first period investor will

only not invest in equilibrium if x ≥ pV . However, if this is true then x ≥ pV q
1−(1−p)(1−q)

because q
1−(1−p)(1−q) ≤ 1 ∀ 0 ≤ q ≤ 1. Thus, if the first round investor will not invest in

the No-Invest equilibrium then he wont invest in the Invest equilibrium, and vice versa.

Therefore, there is no financing risk in this model - investors either always invest or

never do. In order to get rational equilibrium financing risk the forecast of no financing

tomorrow must fundamentally alter the outcome of the project in some way. This is what

the model we present in this paper does.

A3. Proof of Proposition 1:

Under the belief that future investors will not invest if the signal s(t + 1) = 0 and

otherwise will invest, then if the the signal s(t) = 1 then the expected project NPV is

Π
∣∣
s(t)=1

=
γa[θV (1) + (1− θ)V (0)]− x(1 + r)

(1 + r)− θ(1− γl − γa)
(A9)

It is only rational for a VC to forecast that a future VC will invest even if the project has

not improved if Π
∣∣
s(t+1)=1

≥ 0, or, given the stationarity in the model Π
∣∣
s(t)=1

≥ 0.

If, on the other hand, the signal s(t) = 0 and the investors believe that future investors

will not invest if s(t+ 1) = 0 then the expected project NPV is
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Π
∣∣
s(t)=0

=

[
(1− φ)(1− γl − γa)

1 + r

]
γa[θV (1) + (1− θ)V (0)]− x(1 + r)

(1 + r)− θ(1− γl − γa)

+

[
γa[(1− φ)V (1) + φV (0)]

1 + r
− x
]

(A10)

But it is only rational to forecast other VCs will not invest if Π
∣∣
s(t+1)=0

< 0, or given the

stationarity in the model if Π
∣∣
s(t)=0

< 0.

Given these equations then it follows directly that Π
∣∣
s(t)=1

> Π
∣∣
s(t)=0

, under the belief

that s(t + 1) = 0 implies no future investment, and there are three possibilities. First,

if Π
∣∣
s(t)=1

> Π
∣∣
s(t)=0

≥ 0 then the expected profit from investing when s(t + 1) = 0

is positive and therefore it is not rational to believe that investors will not invest when

s(t + 1) = 0. In this case rational investors believe the firm will always get investment.

Second, if 0 > Π
∣∣
s(t)=1

> Π
∣∣
s(t)=0

then independent of the signal the NPV is negative

investors will never invest. Third, if Π
∣∣
s(t)=1

≥ 0 > Π
∣∣
s(t)=0

then the signal determines

whether or not the expected profit from investing is NPV positive.

It is possible for both inequalities Π
∣∣
s(t)=1

≥ 0 > Π
∣∣
s(t)=0

to simultaneously hold as long

as γa[θV (1) + (1− θ)V (0)] > x(1 + r) and

γa[θV (1) + (1− θ)V (0)]− x(1 + r)

(1 + r)− θ(1− γl − γa)
<
x(1 + r)− γa[(1− φ)V (1) + φV (0)]

(1− φ)(1− γl − γa)
(A11)

as long as V (0) is low enough relative to V (1) and φ and θ are high enough. For such

parameters the expected profit from investing when s(t) = 1 is positive and the expected

profit from investing when s(t) = 0 is negative. So rational investment depends on the

signal. The equilibrium choice is to invest when s(t) = 1 and not to invest when s(t) = 0

given the beliefs of other agents.26 Thus, there is are two symmetric pure strategy subgame

perfect Bayesian equilibria in which every investors decision to invest depends on the signal.

A4. Proof of Proposition 2:

We begin by solving for the profit functions for any level of commitment. This can

be done using an iterative expansion process or by simply multiplying each potential

outcome by the probability it occurs. For an investment with N periods of committed

capital, n = N , there could be success, failure, or the commitment could run out. The

26Though, of course, other beliefs could generate alternative equilibria.
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value of the success or what happens if the commitment runs out depend on the state

when it occurs. So for any N ≥ 2

Π
∣∣n=N

s(t)
= (

γaV (1)

1 + r
− x)

N−2∑
i=0

(1− γl − γa)i

(1 + r)i

+ Π
∣∣n=0

s(t+N)=1

(1− γl − γa)N

(1 + r)N

[
Z Y

]
SN−1

1

0


+ (

γaV (1)

1 + r
− x)

(1− γl − γa)N−1

(1 + r)N−1

[
Z Y

]
SN−1

1

0


+ (

γaV (0)

1 + r
− x)

(1− γl − γa)N−1

(1 + r)N−1

[
Z Y

]
SN−1

0

1

 (A12)

where Z = s(t)θ+(1−s(t))(1−φ) and Y = s(t)(1−θ)+(1−s(t))φ and S is the transition

matrix (equation (1)). The first term accounts for the possibility that the project might

succeed in any period and generate a value V (1) because of the future commitment, and

investors must pay x until it succeeds, or fails. The second term accounts for the possibility

that after N periods the firm has neither progressed nor failed. If the state is s(t+N) = 0

then the project is worth zero at that point but if s(t+N) = 1 then the project is worth

Π
∣∣n=0

s(t+N)=1
= Π

∣∣n=0

s=1
, (because of stationarity) which must be multiplied by the probability

that the state is s(t + N) = 1, which is
[
Z Y

]
SN−1

1

0

, which depends on the initial

state. The final two terms account for the possibility that for all N-1 investments the

project neither succeeds nor fails, and then the projects succeeds with the N th investment.

Whether this success generates V (1) or V (0) depends on the state in the N th period. The

probability that it is s(t+N) = 1 is
[
Z Y

]
SN−1

1

0

, and the probability that the N th

period state is s(t+N) = 0 is
[
Z Y

]
SN−1

0

1

.

A project faces financing risk even with a commitment of n = N as long as Π
∣∣n=N

s(t+N)=0
<

0. Any particular level of commitment may not make the project NPV positive. However,
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the limit of Π
∣∣n=N

s(t)=0
as N− >∞ is

Π
∣∣n=∞
s(t)=0

=
γaV (1)− (1 + r)x

(1 + r)− (1− γl − γa)
(A13)

which is just the value of the project without financing risk, and thus clearly NPV positive.

Therefore, there is some N̄ < ∞ such that Π
∣∣n=N̄

s(t)=0
> 0. So investors will make an

investment of N̄x regardless of the signal s(t). So the project is no longer impacted by

financing risk.

A5. Proof of Proposition 3:

With complete contracts we know from Proposition 2 that the value of the project with

commitment is equation (A12).

With incomplete contracts the profit functions with commitment for n = N ≥ 2 is

Π
∣∣n=N

s(t)
= (

γaV (1)

1 + r
− x)

N−2∑
i=0

(1− γl − γa)i

(1 + r)i

+ Π
∣∣n=0

s(t+N)=1

(1− γl − γa)N

(1 + r)N

[
Z Y

]
SN−1

1

0


+ (

γaV (1)

1 + r
− x)

(1− γl − γa)N−1

(1 + r)N−1

[
Z Y

]
SN−1

1

0


+ (

γaV (0)

1 + r
− x)

(1− γl − γa)N−1

(1 + r)N−1

[
Z Y

]
SN−1

0

1


− xγl

1 + r

N−2∑
i=0

(1− γl − γa)i

(1 + r)i

N−2−i∑
j=0

1

(1 + r)j

 (A14)

where Z = s(t)θ+(1−s(t))(1−φ) and Y = s(t)(1−θ)+(1−s(t))φ and S is the transition

matrix (equation (1)). For n < 2 there is no difference between complete and incomplete

contracts.

The difference between complete and incomplete contracts is (A14) - (A12)

− xγl
1 + r

N−2∑
i=0

(1− γl − γa)i

(1 + r)i

N−2−i∑
j=0

1

(1 + r)j

 < 0 (A15)
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Thus, the value of committing and extra x with incomplete contracts is less than with

complete contracts. So incomplete contracts reduce the value of committing more money.

Furthermore, the derivative of equation (A14) with respect to γl or x is negative.

Therefore, the reduction in value from incomplete contracts is larger for projects with

larger γl or more costly experiments. Thus, the reduction in value is larger for more

‘innovative’ firms - those where the option to shut down is more valuable.

The limit of Π
∣∣n=N

s(t)
with incomplete contracts as N− >∞ is

Π
∣∣n=∞
s(t)

=
γaV (1)− (1 + r)x− γlx/r

(1 + r)− (1− γl − γa)
(A16)

which may or may not be positive depending on the size of x/r and the probability

of failure. Thus, for some firms with large enough γl, committing enough to eliminate

financing risk will be NPV negative. Thus, for these firms committing some amount less

than infinity will make the project NPV negative.


